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The problem of the motion of a heavy rigid body is considered in the so-called "restricted" formulation, which is obtained on 
the assumption that two dimensions of the body, which we will call its "width" and "thickness", are considerably less than the 
third dimension, the "length" of the body. They dynamics of the limiting objects which arise are investigated; in particular, the 
question of the existence and stability of the steady motions, the separation of motions, and the integration and integrability of 
the equations of motion is considered. © 2005 Elsevier Ltd. All rights reserved. 

The problem of restricted formulations of problems of rigid body dynamics was formulated in [1] (see 
also [2]) when investigating the main properties of the limit problems of the dynamics of a heavy rigid 
body with a fixed point and the dynamics of a rigid body in an ideal incompressible fluid, at rest at infinity. 
Below, developing an idea put forward in [3], we suggest a method of introducing a parameter, 
characterizing the dimensions of the body, which differs somewhat from the method used previously 
in [1] and enables a wider class of problems with more abundant dynamic properties to be investigated. 

1. T H E  G E N E R A L  E Q U A T I O N S  O F  M O T I O N  

Consider the motion of a heavy rigid body about a fixed point. For simplicity we will assume that the 
body consists of a certain number of point masses  A i with masses mi, i ~ ~. Suppose OxF2x3 is a body- 
fixed system of coordinates, the origin of which coincides with the fixed point O, and whose axes are 
directed along the principal axes of inertia about the point O. The position of the pointsAi is specified 
by the vectors O-----~i, the projections of which on to the axes of this system of coordinates have the form 
ri = (rli, rzi, r3i). 

If g is the acceleration due to gravity, ¢0 = ((01, o)2, o)3) e R3(¢0) is the angular velocity vector and 
3' = (~1, ~/2, ~/3) e R3(3") is the unit vector, directed along the ascending vertical, the equations of motion 
have the form 

(A  2 + A3)611 = (A 3 - A2)012033 + ]t2M 3 - ]t3M 2 (1, 2, 3) (1.1) 

YI = Y2°3 - ~'3m2 (I, 2, 3) (1.2) 

Aj = Z mirj2i ' Mj = g y~mirji, M = Z mi (1.3) 
i~,~ i~,9 i~ # 
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The system of Euler-Poisson equations (1.1), (1.2), as is well known, in addition to the energy integral 

1 
°if0 = 2 2 (A2 + A3)O21 + 2 Ml~tl = h (1.4) 

(1,2,3) (1,2,3) 

allows of the area integral 

and the geometric integral 

¢1 = 2 (A2 +A3)mlYI = Pq (1.5) 
(1.2,3) 

Ca = Z 7} = 1 (1.6) 
(1,2,3) 

For this to be completely integrable one additional integral is missing, which, as is well known, exists 
in the Euler, Lagrange and Kovalevskaya cases for arbitrary values of the constant of the area integral 
and also in the Goryachev-Chaplygin case at the zero level of this integral. 

2. T H E  L I M I T  T R A N S I T I O N  

We will now assume that the "length" of the body is much greater than its "width" and its "thickness", 
and that the body is prolate along its third axis. In order to formalize this, we will introduce a parameter 

e 0 such that 
t 

rji = E(rji + gPji), j = 1, 2 (2.1) 

We will assume that the parameter e is sufficiently small and that the following relations are satisfied 

Then 

Z t 
mirji = O, j = 1, 2 

2 , 2 , , ,2 , 
Aj  = £ A j  + ... .  Mj  = 13 Mj,  j = 1, 2; Aj = Z mir j i '  M'j = IF. miPji 

i e ~  i ~  

Dropping the primes, we can represent Eqs (1.1) in the form 

( E 2 A 2 + A 3 + ' " ) 6 ) l  = (A3-E2A2 + ' ' ' ) O 2 0 3  + 7 2 M 3 - 7 3 E 2 M 2  

(A3 + E2AI + ".-)6)2 = ( s2A1 - A3 + "')O3011 + 73E2M1 - Y I M 3  (2.2) 

e2(A1 + A 2 + ... )6) 3 = E2(A2 - A 1 + ...)o h m2 + 71E2M2 - ]t2g2M1 

Dividing the left- and right-hand sides in the last equation by a2 and then letting the parameter e tend 
to zero, we have in the limit 

6)1 = O103 +~'13~t2 ' 6)2 = --O301--g3~/1, 6)3 = Kmlo2+Y192-7291 
(2.3) 

K = (A2-A1)/(AI+A2),  gj = MjI(AI+A2),  j = 1,2, g3 = M31L3 

Equations (2.3) must be supplemented by Poisson's equations (1.2). By taking appropriate limits in 
the first integrals ¢0 and ;}1, we can represent them in the form 

•0 = A3((O21 + 0 ~ ) / 2 + g 3 ] t 3 )  = h, ¢1 = A3(O1]tl + o2]t2) = PV = A3P (2.4) 

These equations were investigated in [1] for the case when K = 0 and [~3 --'-- 0. Henceforth, without 
loss of generality, we will assume that K ___ 0. 
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Remarks. 1. IfK = 0, the body is similar to a pencil, in which the "width" and "thickness" approximately coincide. 
The fact that ~tl and ~t2 are non-zero denotes a slight asymmetry of the "point", while the quantity P3 corresponds 
to the longitudinal displacement of the centre O f mass with respect to the suspension point. The case K ,  0 denotes 
that a "student's ruler" is being considered, in which the "width" differs considerably from the "thickness". 

2. It would be natural to assume that Eqs (2.3) possess the structure of the Poincar6-Chetayev equations. 
However, we know of no proof of this assumption. 

3. SOME CASES OF THE E X I S T E N C E  OF 
A D D I T I O N A L  F I R S T  I N T E G R A L S  

For Eqs (1.2) and (2.3) we can indicate some cases where additional first integrals exist. 
The "Euler case'. Suppose ~tl = ~t2 = ~t3 = 0. In this case Eqs (2.3) can be separated from Poisson's 

equations (1.2) and they can be considered independently of the latter. The additional integral can be 
represented in the form 

¢3 = (K0)~ + 0)~)/2 = f (3.1) 

or in the form 

2 0)~)/2 g ~3 = (-  Kin1 + = (3.2) 

In this case the equations of motion of the body turn out to be completely integrable. As in the classical 
Euler case, in the general case joint levels of the first integrals if0 and if3 are formed by a pair of curves, 
symmetrical about the origin of coordinates, each of which is a diffeomorph of a circle. In special cases, 
the joint levels consist either of a pair of symmetrical points or of a separatrice contour. This contour 
is situated at the zero level of integral (3.2). This special level of the first integral (3.2) is formed by a 
pair of intersecting planes 

JQ+ = m 3 + 4rK0)1 = 0 (3.3) 

It can be shown by a standard method, Routh's method, that when K ~ 0 in the case considered the 
set of steady motions, as in the Euler case, consists of uniform rotations about the axes of the body- 
fixed system of coordinates. In view of the assumption that K is non-negative, rotations about the first 
and third axes turn out to be stable, whereas rotation about the second axis is unstable. 

In the general case, the equations of motion in the "Euler case" can be integrated in terms of elliptic 
functions. Some qualitative properties of the motion of such a system will be considered below. 

None that, for dynamically symmetrical bodies, the equations of motion in the Euler case are obtained 
from the ones considered if we put K = 0 in them. In this case, the additional integral, as a rule, has 
the form 

o~3 = 0)3 

Remark. It can be shown by direct substitution of expressions (2.1) into the conditions for the existence of 
Kovalevskaya and Goryachev-Chaplygin integrals that these conditions fail the limit transition performed, and 
the corresponding additional integrals do not exist. The Lagrange case is not such - it requires an additional 
consideration. 

The Hess case. As in the classical problem of the motion of a heavy rigid body about a fixed point, 
for the restricted formulation no splitting of the separatrice and the connected existence of linear 
particular integrals is observed. These integrals have the form (3.3) and they exist when the following 
conditions are satisfied 

~1 = :~4~k3, L2 = 0 (3.4) 

respectively. 
We will compare the particular integrals (3.3) with the Hess integral in the classical problem of the 

motion of a heavy rigid body about a fixed point. To do this we introduce the notation 

11 = Az+A 3 (1 ,2 ,3)  

and, to fix our ideas, we will assume 11 > 12 > 13. Then, if 

a = (a 1, a 2, 03): 01 = / ~ -  111, 02 = 0, a 3 = / ~ -  121 
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the Hess integral has the form 

Fe = a1110) 1 +E°a3130)3 = 0, 13 ° = +1 

where its existence is due to the fact that the following conditions are satisfied (compare with (3.4)) 

aiM 3-13°a3M 1 = 0, M 2 = 0 

4. I N T E G R A T I O N  OF THE E Q U A T I O N S  OF M O T I O N  

In the special case when K = 0, a method of integrating the equations of motion (1.2) and (2.3) was 
proposed previously in [1] (see also [3, pp. 239-242]). The approach can also be used when the condition 
K = 0 is not satisfied. 

We note first of all that the area integral ~1 and one of Poisson's equations consist of a system of 
two algebraic equations 

0)171 + 0)272 = P ,  0)271 - (D172 = "~3 (4.1) 

This system is linear in (0)1, 0)2) and its solution has the form 

PTI-72~3 P72 + 7 1 ~ 3  
0)1 -- 2 2 ' 0)2 -- 2 2 (4.2) 

71 + 72 71 + 72 

Substituting solution (4.2) into the energy integral ~0, we have 

le2+,  
2 2 72 l- g 3 7 3  = H 

71 + 2 

Using the geometrical integral, this equation can be converted to the form 

2 .2 
P + 73 = 2(1 - 7 ~ ) ( H -  g 3 7 3 )  (4.3) 

which is closed with respect to 73- Recalling that 

71 = sin0sing), 72 = sin0cosq0, 73 = cos0 

where q) and 0 are the angles of proper rotation and nutation, it can be shown that the equation describing 
the change in the angle of nutation can be separated from the equations for the two other angles 
describing the position of the system. 

Equation (4.3) is identical with the equation describing the motion of a spherical pendulum after 
reducing the order according to Routh. When g3 ¢ 0 this equation can be integrated in elliptic functions. 
When g3 = 0 it can be integrated in terms of elementary functions, where 

73 = Acos[o3(t+~)], ~t 3 = -Ao3sin[0)(t+~)l,  o3 = 2 ~ ,  A = ~1-p2/0)  2 (4.4) 

The quantity m plays the role of the frequency of the oscillations while A plays the role of their 
amplitudes. 

We will introduce the variable {, such that 

001 = f2sin~, 0)2 = f~cos~, ~ = ~(73; g3, H) = ~2(H-g373) ,  f~(73; 0, H) = o3 (4.5) 

and we will consider relations (4.1) as equations in (71, 72). These equations are linear, and their general 
solution can be represented in the form 

P0)1 + ~/30)e Psin~ + 73cos~ 
Y1 = - (4.6) 2 2 ~'2 

O31 + 032 
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Pro 2 - ~/3ml Pcos~ - 73 sin~ 
- ( 4 . 7 )  7 2 -  2 2 

f-O 1 + m 2 

Now, differentiating the expression for f.01 with respect to time, substituting the expression obtained 
and relation (4.7) into the first of equations (2.3) and reducing similar terms, we have 

= CO 3 4" ~13P/~~ 2 (4.8) 

Differentiating the left- and right-hand sides of Eq. (4.8) with respect to time, substituting the expression 
for ¢b3 from the last equation (2.3) into the right-hand side, and also replacing the quantities (ml, co2, 
71, 72) by their values from relations (4.5)-(4.7), we obtain the second-order non-autonomous equation 

Psin~ + ~t3 cos ~ 
= Kf22sin~c°s~ + g2 

Pcos{ - •3 s i n g  22P. 
~.l 1 ~ + ~13 ~--~ It 3 (4.9) 

When gl = g2 = g3 = 0 this equation is completely integrable - its equivalence to the equations of 
motion of a mathematical pendulum can be proved using the replacement 1"1 = 2{. When gl = g2 = 0 
and for small values of the parameter g3, the non-integrability of Eq. (4.9) follows from the non- 
integrability of the equations of motion of a pendulum acted upon by a periodic torque.t We have thereby 
proved that there is no first integral in the case which could have been called the "Lagrange case". Finally, 
the non-integrability of Eq. (4.9) when g3 = 0, gig2 ;e 0 was proved in [4] by the method of splitting 
the separatrice. 

Hence, when the non-degeneracy conditions are satisfied, the first integrals off1 and ~2 define a three- 
dimensional invariant surface in (3', ~)  space. The variables ~, ~ and 73 can be regarded as coordinates 
on this surface. This indicates that, if the initial system is completely integrable, Eq. (4.9) is also 
completely integrable. The above results on the non-integrability of Eq. (4.9) prove the non-integrability 
of the equations of motion of a heavy rigid body in the "restricted" formulation. 

We draw attention to the fact that chaotic motion, related to the non-integrability, develops with 
respect to the angle of rotation, whereas the dynamics with respect to the angles of precession and 
nutation remain regular. This is the basis for dividing the motions with respect to the angles of nutation 
and precession, on the one hand, and with respect to the proper rotation on the other, which is precisely 
the restricted formulation of the problem considered. 

Note also that a similar separation of the motions is also possible in a number of other classical prob- 
lems on the motion of a rigid body, in particular, in the problem of the motion of a body in an unbounded 
volume of an ideal incompressible fluid. 
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